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Infinite AB percolation clusters exist on the triangular lattice 

John C Wierman and Martin J Appel 
Department of Mathematical Sciences, The Johns Hopkins University, Baltimore, 
MD 21218, USA 

Received 8 September 1986 

Abstract. Infinite AB percolation clusters are shown to exist almost surely on the triangular 
lattice for an interval of parameter values. It was not previously known that infinite AB 
percolation occurred with positive probability on any planar lattice. 

1. Introduction 

We consider a variant of the percolation model, called ‘AB percolation’ by Halley 
(1983) and ‘anti-percolation’ by Turban (1983). Two types of species, labelled A and 
B, randomly occupy the sites of an infinite lattice graph G, with probabilities p and 
1 - p ,  respectively. Neighbouring species of opposite type are bonded together, while 
species of the same type do  not bond. The object of study is the size distribution of 
the clusters of bonded species (AB clusters). In particular, one wishes to determine 
whether infinite AB clusters exist for some parameter values, or if all AB clusters are 
finite for all values of p E [0, 11. 

Halley (1983) proved that if the graph G is bipartite and has a site percolation 
critical probability strictly greater than f, then there are almost surely no infinite AB 
clusters when p = i. Since one expects the probability of an infinite AB cluster to be 
largest when p =f, this suggests that infinite AB percolation does not occur on such 
graphs for any value of p .  A mathematically rigorous proof of non-existence of AB 
percolation on a subclass of such graphs is given by Appel and Wierman (1987). 

Halley (1983) stated that the existence of infinite AB percolation has not been 
proven for any two-dimensional lattice graph G. Scheinerman and Wierman (1987) 
construct a lattice graph which is a periodic graph in two dimensions, but is not planar, 
on which infinite AB percolation clusters exist almost surely for an interval of values 
of p .  The proof is a short renormalisation-based argument. 

By inserting edges, any planar graph can be made into a fully triangulated planar 
graph. Since, for any value of p ,  inserting edges increases the probability that an 
infinite AB cluster exists, if infinite AB percolation clusters exist on any planar graph, 
they exist on a fully triangulated planar graph. Monte Carlo simulations of Mai and 
Halley (1980) suggest that infinite AB clusters exist on the triangular lattice for 
p E [0.2145, 0.78551. SevSek et a1 (1983) give an incorrect argument which claims that 
an infinite AB cluster exists on the triangular lattice when p = 4. 

We discuss the errors in the SevSek et a1 argument in § 2. ‘Double paths’ are defined 
and their relationship to AB percolation and square lattice paths are developed in §§ 3 
and 4. Section 5 provides a proof that infinite AB percolation clusters exist for an 
interval of values of p on the triangular lattice, making use of the basic idea of the 
SevSek et a1 approach. 
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2. The Sevkk et a1 approach 

SevSek er a1 (1983) remark that, on the triangular lattice, all the boundary sites of a 
single site percolation cluster of one species belong to the same AB cluster. They then 
claim that, since the size of a percolation cluster diverges at the classical percolation 
model critical probability, the size of the cluster boundary diverges also. If so, an 
infinite AB cluster would exist when p = i, the classical site percolation critical probabil- 
ity for the triangular lattice. 

There are two flaws in this approach. First, results of Kesten (1982) establish that 
for classical percolation on a class of periodic two-dimensional graphs, which includes 
the triangular lattice, there almost certainly is no infinite cluster at the critical probabil- 
ity. Second, an open cluster in a classical percolation model may contain a circuit 
with closed sites in both its exterior and interior, in which case the boundary sites may 
belong to two different AB clusters. 

Despite these shortcomings, the basic approach of constructing an infinite AB 
cluster by following the boundaries of clusters of like species ( A  or B) can be modified 
to obtain a rigorous proof. Following preliminary definitions and properties developed 
in §§ 3 and 4, we present a proof in § 5.  

3. Double paths 

The triangular lattice 9 may be embedded in the plane with vertex set V( 9) = Z2 U 

{Z2 + (4, f )}  such that vertices U = (U,, u 2 )  and U = ( U,, U,) are adjacent (denoted -) if 
and only if (U,, U,) = (U,, U,* l) ,  (U, it, U,*$) or (U,*;, u 2 F i ) .  Note that by deleting 
all edges of the first type we also have an embedding of the square lattice Y in the plane. 

For each vertex U of 9, there exists a random variable L ( u )  which labels U with 
an A or B. At times, we will refer to A and B as colours. The labelling random 
variables are assumed to be independent and identically distributed, with P [  L( U )  = 
A ]  = p  and P [ L ( u )  = I?] = q = 1 - p  for all U E V (  9), where p E [0,1]. 

A path II = ( t o ,  . . . , t,,) is a sequence of vertices such that t i - ,  and t i  are adjacent 
for all i = 1, . . . , n. II is an AB alternating path (or simply AB parh) if 

if i is odd 
if i is even 

V i  = 0,. . . , n L( f i )  = 

or 

if i is odd 
if i is even 

Vi=O, .  . . , n. L( t i )  = 

The AB cluster containing U, denoted C;", is the set of all vertices w for which there 
exists an AB path from U to w. Let IC;"l denote the number of vertices in C;". 

Consider a pair of vertex disjoint paths ( t ,  , t 2 ,  . . . , 1,) and ( U ,  , . . . , U,,), with edge 
sequences ( e , ,  . . . , e , , - , )  and (f,, . . . ,f,,-,) respectively. If t ,  - U ,  and tm - U,,, and 
there are no vertices in the interior of the region bounded by the simple closed curve 
made up of the edges e , ,  e , ,  . . . , e , - , ,  (r,,,, U,,), fn-,,.. . ,f,, (U,, r , ) ,  we say that the 
pair of paths form a double parh. A double circuit is a pair of vertex-disjoint circuits 
with no vertices in the interior of the region between them. We say that a double path 
or double circuit is monochromatic if all of its vertices are labelled with the same 



A B  percolation 2 5 3 5  

colour. If the common colour is A(B), then it is called an A (B, respectively) double 
path or A (B) double circuit. 

Note that any path which crosses a monochromatic double path or double circuit 
must have two consecutive vertices labelled with the same colour. Thus, an AB path 
cannot cross a monochromatic double path or double circuit. For a vertex U which is 
surrounded by a monochromatic double circuit, we have /CtBI < CO. 

For an AB cluster C, define the interior boundary a,C to be the set of all vertices 
of C which are adjacent to a vertex which is not in C, and the exterior boundary a,C 
to be the set of all vertices which are not in C but are adjacent to a vertex in C. One 
may view C as the region e constructed by taking the union of all triangular faces of 
Y which have all three vertices in C, in which case a,C consists of the vertices on the 
boundary of e. If /CI <CO, then the a,C is a union of circuits which make up the 
boundary of e, one of which, say I-, contains all of 2. in its interior. The vertices of 
a,C which are adjacent to r also form a circuit r'. Note that for each pair of adjacent 
vertices of r, there is a vertex of r' which is adjacent to both vertices. If two adjacent 
vertices of had opposite colours, the corresponding vertex of r' would be in the AB 
cluster C which is a contradiction. Therefore, r must be monochromatic. Also, if any 
vertex of I" had a different colour than r, it would be in C. This contradiction implies 
that r' is also monochromatic, with the same colour as r. Hence r U r' is a monochro- 
matic double circuit. 

From the preceding discussion, we conclude that an AB cluster C t B  is finite i f  and 
only if U is surrounded by a monochromatic double circuit. We also conclude that 
two vertices U and w are in a common AB cluster unless there exists a monochromatic 
double circuit which surrounds U or w but not both. 

A path in 9 in which all vertices are labelled A is called an A path. The set of all 
vertices which are joined to U by an A path is the A cluster containing U, denoted Ct .  
The terms B path and B cluster are defined similarly. As in the discussion above, we 
may define interior and exterior boundaries of C:. A similar argument shows that the 
interior boundary consists of a union of A circuits and the exterior boundary consists 
of a union of B circuits. All vertices in corresponding pairs of interior and exterior 
boundary circuits are in a common AB cluster. If C t  does not contain an A double 
circuit, then the interior and exterior boundary vertices are all in a common AB cluster. 
(This will not be the case if there is an A double circuit in C t  which separates two 
parts of the boundary.) 

4. Relationship to square lattice paths 

Define the A double path cluster Ct" to be the set of all vertices of 9 which are in 
an A double path containing U. The double path critical probability is defined by 

PATA = sup{p E [O, 11: Ep[  c y ]  <CO}  

where U is an arbitrary vertex (the expectation, and thus PAT", is independent of the 
choice of U )  and Ep denotes the expectation relative to the probability measure with 
A labelling probability p .  

Note that if p > 1 - P A T " ,  so q < P A T " ,  then the expected size of B double path clusters 
is finite. If &"A>,  then for p E (1  -&", p?") the expected sizes of both A double 
path clusters and B double path clusters are finite. In the remainder of this section, 
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we establish a relationship between double paths and square lattice paths which shows 
that pATA > i .  

Recall that in the embedding of 9 in the plane there are 'vertical' edges which are 
parallel to the axis, and 'diagonal' edges. The diagonal edges form a copy of the 
square lattice. 

Consider a double path on Y consisting of ( t l ,  t 2 , .  . . , t , )  and ( U , ,  u 2 , .  . . , U,,). 
Note that for each pair of vertices ( t , ,  z , + ~ )  which are connected by a vertical edge, 
there is a vertex in { u l , .  . . , U,,}, denoted U:, which is connected to both t ,  and by 
diagonal edges. Starting from t i ,  we may construct a path of only diagonal edges that 
passes through all the vertices t i ,  . . . , t ,  in order, inductively: reach t , , ,  from t ,  through 
( t , ,  if it is a diagonal edge, and through ( t , ,  U:) and (U:, t , + l )  if ( t 8 ,  t , + i )  is a 
vertical edge. The resulting path is contained entirely in the square lattice. Similarly, 
there is a square lattice path containing ( u i ,  . . . , U"). These two paths intersect at a 
vertex if either of the original paths have a vertical edge, and can be connected by a 
diagonal edge if both original paths are entirely diagonals, so the vertices 
{ t l , .  . . , t,, ul, .  . . , U,} are in a common cluster on the square lattice. 

Using symbols in parentheses to denote dependence on the lattices, we see from 
the remarks above that for every configuration 

C:'"( Y )  G C!( 9) 
so 

Therefore p < p T (  9') implies p 
(1981) and Toth (1985), we then have 

Y),  so p T (  9') c pATA( Y).  By the results of Russo 

p$A( Y ) 3 p T ( Y ) = p H ( Y ) > 0 . 5 0 3  478. 

5. Existence proof 

Theorem. If p E (1 -pATA, 
the triangular lattice. 

then there is almost certainly an infinite AB cluster on 

ProoJ For each i3 1, let A , ( & )  denote the event that the vertex (0, i )  belongs to 
an A(B) double path cluster which contains a double circuit which surrounds the 
origin. Since such a cluster must contain at least 2 i  vertices, A,  E </Ch;-dfi,l 3 2 i }  and 
B, E {iC:$,,I a 2 i ) .  Noting that when p E (1 

5 f P [ A , u B , l <  c ~ ~ [ l ~ ~ l ~ l ~ 2 ~ l + ~ [ l ~ ( " d l , , 1 2 i l ~  
1 = 1  , = I  

, = I  

f{q/C;Ao,ll+ ~,[lC,"d1,,11~ 
< +Co. 

By the Borel-Cantelli lemma, with probability one, only finitely many of the events 
A ,  U B, occur, so there exist only finitely many monochromatic double path clusters 
which contain a double circuit around the origin. 
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Let I denote the largest integer for which A, U B, occurs, and  without loss of 
generality suppose that A, occurs. We may define an  exterior boundary dECZ1) as in 
0 3, and note that there is a circuit r in dEC$;/) which surrounds both the origin and  
C$Ar,. Let U be any vertex in r. Then U must be in an  infinite AB cluster: if 1C:‘”I <a, 
then its interior and exterior boundary form a monochromatic double circuit $. 
However, IC, cannot intersect C Y ! , ,  since then 4 c CZ[,, contradicting the fact that 
r surrounds C g , , .  But Sl, cannot be disjoint from CktrI, since then it must surround 
the origin and  C$A,,, in which case AI U BI occurs for some i > I. Therefore, in fact 
I CtBl = +CO, as claimed. 

6. Concluding remarks 

This paper proves that infinite AB percolation clusters exist on the triangular lattice 
almost certainly for p E (1 - ptA, ptA) ,  providing the first example of a planar lattice 
graph which exhibits an  AB percolation transition. Additional research on this problem 
strongly indicates that infinite AB percolation clusters almost certainly do  not exist 
when p E (1 -pATA, ptA),  and that the critical probability for AB percolation is equal 
to the site percolation critical probability of a classical percolation model on a non- 
planar graph which is not a matching graph in the sense of Sykes and  Essam (1964). 
The methods used here appear to generalise to a broad class of graphs. 
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